22 research outputs found

    Fault detection by segment evaluation based on inferential statistics for asset monitoring

    Get PDF
    Detection of unexpected events (e.g. anomalies and faults) from monitoring data is very challenging in machine health assessment. Hence, abrupt or incipient fault detection from the monitoring data is very crucial to increase asset safety, availability and reliability. This paper presents a generic methodology for abrupt and incipient fault detection and feature fusion for health assessment of complex systems. Proposed methodology consists of feature extraction, feature fusion, segmentation and fault detection steps. First of all, different features are extracted using descriptive statistics. Secondly, based on linearly weighted data fusion algorithm, extracted features are combined to get the generic and representative feature. Afterward, combined feature is divided into homogeneous segments by sliding window segmentation algorithm. Finally, each segment is further evaluated by coefficient of variability which is used in inferential statistics, to evaluate health state changes that indicate asset faults. To illustrate its effectiveness, the methodology is implemented on point machine and Li-ion battery monitoring data to detect abrupt and incipient faults. The results show that proposed methodology can be effectively used in fault detection for asset monitoring

    Railway point machine prognostics based on feature fusion and health state assessment

    Get PDF
    This paper presents a condition monitoring approach for point machine prognostics to increase the reliability, availability, and safety in railway transportation industry. The proposed approach is composed of three steps: 1) health indicator (HI) construction by data fusion, 2) health state assessment, and 3) failure prognostics. In Step 1, the time-domain features are extracted and evaluated by hybrid and consistency feature evaluation metrics to select the best class of prognostics features. Then, the selected feature class is combined with the adaptive feature fusion algorithm to build a generic point machine HI. In Step 2, health state division is accomplished by time-series segmentation algorithm using the fused HI. Then, fault detection is performed by using a support vector machine classifier. Once the faulty state has been classified (i.e., incipient/starting fault), the single spectral analysis recurrent forecasting is triggered to estimate the component remaining useful life. The proposed methodology is validated on in-field point machine sliding-chair degradation data. The results show that the approach can be effectively used in railway point machine monitoring

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations

    A new adaptive prognostics approach based on hybrid feature selection with application to point machine monitoring

    Get PDF
    This paper proposes a new adaptive prognostics approach consisting of hybrid feature selection and remaining-useful-life (RUL) estimation steps for railway point machines. In step-1, different time-domain based features are extracted and the best ones are selected by the hybrid feature selection method. Then, a degradation model is fitted to each of the selected features and the parameters are estimated. In step-2, the RUL of the component is predicted by using the proposed adaptive prognostics approach. The adaptive prognostics is based on the weighted likelihood combination of the estimated model parameters. The model parameters each of which estimated by curve fitting are used in the calculation of the likelihood probability weights. Then, an adaptive degradation model is built by using the weighted combination of the model parameter estimates and the component RUL is estimated. The proposed approach is validated on in-field point machine sliding-chair degradation and the results are discussed

    Editorial special issue: PHM for railway systems and mass transportation

    Get PDF
    The railway and mass transportation system is composed of industrial goods with substantial capital investments and long life cycles. This applies to rolling stock like trains, locomotives, wagons, and even more to the infrastructure like signaling, catenary, tracks, bridges, and tunnels. The lifespan of rolling stock is 30 to 40 years while the infrastructure is used 30 to 60 years even more than 100 years in case of tunnels and bridges. As in other industrial goods, the cost drivers are determined in the early design phases but realized mainly during a long time of operation. Maintenance is one of the main cost drivers but essential to a reliable, capable, and – above all – safe operation

    Degradation-level assessment and online prognostics for sliding chair failure on point machines

    Get PDF
    This paper presents a degradation-level assessment and failure prognostics methodology for degrading systems. The proposed methodology consists of offline and online phases. In the offline phase, different time-domain health indicators (HIs) are extracted and the best indicator of degradation is selected by filter-based methods. Then, a degradation model is defined and its parameters are estimated using the selected HI. In the online phase, the k-means clustering is utilized to detect a change(s) in the system’s health state and to trigger failure prognostics for remaining useful life (RUL) prediction. The degradation model parameters are updated as new data are available, and the RUL is predicted iteratively. The proposed methodology is implemented on point machine sliding chair degradation using in-field condition monitoring (CM) data. The results show that the methodology can be effectively used in machine degradation-level assessment and in online RUL predictions

    Feature selection and fault‐severity classification–based machine health assessment methodology for point machine sliding‐chair degradation

    Get PDF
    In this paper, we propose an offline and online machine health assessment (MHA) methodology composed of feature extraction and selection, segmentation‐based fault severity evaluation, and classification steps. In the offline phase, the best representative feature of degradation is selected by a new filter‐based feature selection approach. The selected feature is further segmented by utilizing the bottom‐up time series segmentation to discriminate machine health states, ie, degradation levels. Then, the health state fault severity is extracted by a proposed segment evaluation approach based on within segment rate‐of‐change (RoC) and coefficient of variation (CV) statistics. To train supervised classifiers, a priori knowledge about the availability of the labeled data set is needed. To overcome this limitation, the health state fault‐severity information is used to label (eg, healthy, minor, medium, and severe) unlabeled raw condition monitoring (CM) data. In the online phase, the fault‐severity classification is carried out by kernel‐based support vector machine (SVM) classifier. Next to SVM, the k‐nearest neighbor (KNN) is also used in comparative analysis on the fault severity classification problem. Supervised classifiers are trained in the offline phase and tested in the online phase. Unlike to traditional supervised approaches, this proposed method does not require any a priori knowledge about the availability of the labeled data set. The proposed methodology is validated on infield point machine sliding‐chair degradation data to illustrate its effectiveness and applicability. The results show that the time series segmentation‐based failure severity detection and SVM‐based classification are promising

    ns-3 Based Framework for Simulating Communication Based Train Control (CBTC) Systems

    Get PDF
    International audienceIn a Communication Based Train Control System (CBTC), a central zone controller server (ZC) exchanges signaling messages with on-board carborne controllers (CC) inside the trains through a wireless technology. The ZC calculates and sends periodically to each train its Limit of Movement Authority (LMA), i.e. how far the train can proceed. A CC triggers an emergency break (EB) if no message is received within a certain time interval to avoid collision. Clearly, it is not desired to have an EB due to signaling messages losses (called spurious EB) and not to real risks for the trains. Quantifying the rate of spurious EBs and predicting correctly CBTC system performance are hard tasks with important industrial relevance.This work aims at filling this gap using simulation to better predict CBTC system performance and avoid extra provisioning before deployment. A typical CBTC system implementation for metro by Alstom Transport is considered. New ns-3 modules (CBTC protocol, Video traffic generator, multi-channel scanning mechanism, 3D antennas patterns) are developed and a piece of existing code is enhanced. The simulation is also used to investigate the dimension of the radio access networks in a realistic environment (specific modems and access point antennas, radio frequencies, train and track models), another aspect also ignored in the previous literature. Last, our approach can be useful to validate some analytical works

    Performance Evaluation of Train Moving-Block Control

    Get PDF
    International audienceIn moving block systems for railway transportation a central controller periodically communicates to the train how far it can safely advance. On-board automatic protection mechanisms stop the train if no message is received during a given time window. In this paper we consider as reference a typical implementation of moving-block control for metro and quantify the rate of spurious Emergency Brakes (EBs), i.e. of train stops due to communication losses and not to an actual risk of collision. Such unexpected EBs can happen at any point on the track and are a major service disturbance. Our general formula for the EB rate requires a probabilistic characterization of losses and delays. Calculations are surprisingly simple in the case of homogeneous and independent packet losses. Our approach is computationally efficient even when emergency brakes are very rare (as they should be) and can no longer be estimated via discrete-event simulations

    Performance Evaluation of Train Moving-Block Control

    Get PDF
    In moving block systems for railway transportationa central controller periodically communicates to the train how far it can safely advance.On-board automatic protection mechanisms stop the train if no message is received during a given time window.In this report we consider as reference a typical implementation of moving-block control for metro and quantify the rate of spurious Emergency Brakes (EBs), i.e.~of train stops due to communication losses and not to an actual risk of collision. Such unexpected EBs can happen at any point on the track and are a major service disturbance. Our general formula for the EB rate requires a probabilistic characterization of losses and delays. We derive an exact formula for the case of homogeneous and independent packet losses and we use the results of this analysis to design an efficient Monte Carlo method that takes into account correlated losses due to handovers. We validate our approach via discrete-event simulations, including simulations with ns-3 for which we have developed additional modules for train systems.Our approach is computationally efficient even when emergency brakes are very rare (as they should be) and can no longer be estimated via discrete-event simulations
    corecore